The M–matrix Moore–Penrose inverse problem for weighted paths

نویسنده

  • M. Mitjana
چکیده

Abstract. A well–known property of an irreducible non–singular M–matrix is that its inverse is non–negative. However, when the matrix is an irreducible and singular M–matrix it is known that it has a generalized inverse which is non–negative, but this is not always true for any generalized inverse. We focus here in characterizing when the Moore–Penrose inverse of a symmetric, singular, irreducible and tridiagonal M–matrix is itself a M–matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Schulz-type Method to Compute the Moore-Penrose Inverse

A new Schulz-type method to compute the Moore-Penrose inverse of a matrix is proposed. Every iteration of the method involves four matrix multiplications. It is proved that this method converge with fourth-order. A wide set of numerical comparisons shows that the average number of matrix multiplications and the average CPU time of our method are considerably less than those of other methods.

متن کامل

On level-2 condition number for the weighted Moore-Penrose inverse

In this paper, we present characterizations for the level-2 condition number of the weighted Moore–Penrose inverse, i.e., condMN (A) ≤ cond [2] MN (A) ≤ condMN (A)+ 1, where condMN (A) is the condition number of the weighted Moore–Penrose inverse of a rectangular matrix and cond [2] MN (A) is the level-2 condition number of this problem. This paper extends the result by Cucker, Diao and Wei [F....

متن کامل

Symbolic computation of weighted Moore-Penrose inverse using partitioning method

We propose a method and algorithm for computing the weighted MoorePenrose inverse of one-variable rational matrices. Continuing this idea, we develop an algorithm for computing the weighted Moore-Penrose inverse of one-variable polynomial matrix. These methods and algorithms are generalizations of the method or computing the weighted Moore-Penrose inverse for constant matrices, originated in [2...

متن کامل

The weighted Moore–Penrose generalized inverse and the force analysis of overconstrained parallel mechanisms

This paper reveals the relationship between the weighted Moore–Penrose generalized inverse and the force analysis of overconstrained parallel mechanisms (PMs), including redundantly actuated PMs and passive overconstrained PMs. The solution for the optimal distribution of the driving forces/torques of redundantly actuated PMs is derived in the form of a weighted Moore–Penrose inverse. Therefore...

متن کامل

Hermitian solutions to the system of operator equations T_iX=U_i.

In this article we consider the system of operator equations T_iX=U_i for i=1,2,...,n and give necessary and suffcient conditions for the existence of common Hermitian solutions to this system of operator equations for arbitrary operators without the closedness condition. Also we study the Moore-penrose inverse of a ncross 1 block operator matrix and. then gi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010